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Abstract. The exact propagator of our dynamic system is presented and confirmed by 
expanding it in terms of the energy eigenfunctions and eigenvalues, which agree with those 
obtained from the corresponding Schrodinger equation. For the case of a rational wedge 
the propagator can be expressed as a sum over ‘classical paths’, but with the modified 
Van-Vleck formula. We also evaluate the density matrix and the partition function. 

1. Introduction 

The time-dependent propagator is the quantity K ( r “ ,  t ;  r ‘ )  = (r“/exp( -itH/ h) lr ’ )  and 
is defined as the sum over history (path integral) by Feynman in his classic paper [ 11. 
However, it is known in closed form in only a few cases [2-41. Recently, Schulman 
[5] obtained the exact propagator for a particle subject to an infinite half-plane barrier. 
Wiegel and van Andel [6] extended Schulman’s result by including a harmonic 
potential. Crandell[7] and CCcile Dewitt-Morette et a1 [8] evaluate the exact propagator 
for a particle interacting with a rational wedge. We have extended their results to a 
two-dimensional harmonic oscillator [ 9 ] .  In this paper we generalize our results further. 

In section 2, we solve the Schrodinger equation for a two-dimensional harmonic 
oscillator interacting with a wedge. In section 3 the proposed exact propagator is 
confirmed by expanding it in terms of the energy eigenfunctions and eigenvalues, 
which agree with the results in section 2. In section 4 we express the propagator as a 
sum over ‘classical paths’, but with the modified Van Vleck formula [lo]. Finally, we 
evaluate the density matrix and the partition function in statistical mechanics. 

2. Energy eigenfunctions and eigenvalues 

For our dynamical system we assume that (a) the wedge is along the z axis, (b)  the 
external angle of the wedge is UT (0 < a 2)  and (c) a harmonic potential is centred 
at the origin (see figure 1). The Schrodinger equation in polar coordinates is of the form 

where ,LL is the mass and w is angular frequency of the harmonic oscillator. The 
wavefunction must satisfy the following boundary conditions: 

(2)  $( r, 0) = $( r, a v )  = 0. 
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Figure 1. The edge of the wedge is the z axis. The 
harmonic force is centred at the origin of the ( r ,  cp) 
plane. The path C represents one of the paths from 
the initial position ( r ' ,  e ' )  to the final position ( r " ,  cp") 
during the time interval I .  

We assume that the wavefunction has the form [ l l ]  ( A  = puw/h) 

+(r, q )  = r"' exp(-Ar2/2) s i n ( l q / a ) F ( r )  I = 1 , 2 , 3 , .  . * (3)  

and the angular part s in ( lp / a )  is introduced here in order to satisfy (2). Substituting 
(3) into ( l ) ,  we have 

dTr \ r )  + (21/a + 1 - ~- 2Ar) d F O - [ 2 A ( l / a  + 1) - k']F(r)  = 0 
r d r  (4) 

with k 2 = 2 m E / h 2 .  Now by using the variable [=At-', (4) is transformed into the 
Kummer equation 

In order to obtain the solution regular at r = 0 (or 5 = 0), we find the degenerate 
hypergeometric function 

F (Ar2)=1F , (b ,  l / a + l ;  Ar2) ( 6 )  

and 

b = ; ( / / U  + 1) - k2/4A. ( 7 )  
For large r, F (Ar') would diverge as exp(Ar2), thus preventing normalization of the 
wavefunction. The wavefunction can be normalized only by choosing 

b = -n, n , = 0 , 1 , 2 ,  . . .  (8) 

which give the energy eigenvalues as 

E n , , , =  h w ( l / a +  1 + 2 n , ) .  (9) 

With the help of (3)  and (6 ) ,  we obtain the energy eigenfunction as 

$,??,/(r, p)=  Cn,,lr"(l exp(-A2/2) s in( lq /a ) ,F , ( -n , ,  / / U +  1; Ar') (10) 
with 

cn,,, = ((a7r/2) I,: r''/'+' exp(-Ar')lF:(-n,, l / a  + 1; Ar') 
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being the normalization constant. It is easy to see that from (9) there exist degenerate 
states when l / a  +2n, is a positive integer. In other words, for a rational wedge, a = n / m  
( n  and m are positive integers), the energy spectrum (9) becomes 

E = hw(  lm/ n + 1 + 2n,) 

which give the degenerate states if 2n, = p - l (  m / n )  where p is an  integer and is greater 
than 1. So far as we know, the integral involved in (1 1) has not been found in closed 
form. However, we will derive it in section 3. For later comparison, we evaluate the 
following simpler cases: 

C0,I = 2[A""+'/a.nr(l /a+ l)]"* 

cl,l =2[A'/"+'/a.rrr(l/a+ l ) ] y l / u +  1 )  

C",Z = 2[A"""/ad-(2/a + 1)]1/2 
(12) 

where r( ) is the gamma function. 

3. Exact time-dependent propagator 

We propose that the exact time-dependent propagator is of the form 

K ,  (r", cp", t ;  r', cp') 

) exp[iA(r"+ r"') cot(wt)/2] 
= ( ? m i  sin(wt) 

x {exp[-il(cp"-cp')/a]-exp[-il(cp"+cp')/a]} 
1z-x 

For the rational wedge, the above propagator has been demonstrated [9] by using the 
method of image and by computing the path integrals on a n-sheeted Riemann surface 
[8]. We will see that (13) is valid for the general case too. In order to do so, we rewrite 
(13) in the following form: 

K,( r", cp", t ;  r', cp')  

4A A 
U T  2 

=- exp( -- ( r ' 2 +  rjt2) [sin(icp"/a) sin(lcp'/a)] exp(-iwt) 

exp( -2iwr) 
1 - exp( -2iwr) 

[ 1 - exp( -2iwt)l-I exp 

11 exp( - i w t )  
1 - exp( -2iwt) 

X I , / ,  (2Ar'r" 

since 

2i sin(wt) = [ 1 - exp(-2iwt)] exp(iwt) 

and  

2 cos(wt) = [ 1 +exp(-2iwt)] exp(iwt). 
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Using the identities [12] 

2( c d ~ ) ” ~  
( 1 - U)-’ exp ( - ( c + d ) ”) I ,  ( ) 1-U 1-U 

Li( c)LG( d ) u q  I W I  < 1 
4 !  X 

= (cdu)”’2  1 
q = ~  U l l a  + 1 + q )  

LG(U) = ( q ;  a) 1F,(-q,  a + 1; U )  

with U = exp(-2iwt), c = hri2 ,  d = hr”’, a = l / a  and q = n,, we finally have 

K ,  ( r ” ,  cp”,  t ;  r‘, c p ’ )  

x (hr ’2 ) f”a~hr ’ ’2 ) f ’2a  sin( lcp”/a) sin( Icp’/a) 

xlF,(-n, ,  l / a + l ;  Ar’2),Fl(-nr, l / a + l ;  hr”’) 

x exp[ -i( I / a  + 1 + 2n,)wt]  

which gives the correct eigenfunctions and eigenvalues (see section 2)  and the normaliz- 
ation constant (see (12) for comparison) 

As a by-product, we obtain the integral in (11) as 

We can see that the propagator (13) also satisfies the Dirichlet boundary condition by 
noting that one can obtain the second term in the braces from the first term by the 
transformation 9‘” 2a7r - cp’, due to the wedge. Therefore, (13) is the exact propagator 
for a two-dimensional harmonic oscillator interacting with a wedge. 

4. Sum over classical paths 

Now we are going to discuss the case when the propagator can be expressed as the 
sum over classical paths. In order to investigate this we study the rational wedge case. 
Using the identity (see the appendix of [8] for deviations) 

a. 

t J O ( t ) +  c C O S ( ~ m c p / n ) ~ f m , n ( t )  
/ =  1 

1 
=- { exp[-it cos(cp +2rkn /m) l  

2m k = l  

- ( - i ) f ’n  J / , , , ( u ) ]  exp[iu cos(cp+2rkn/m)] du 
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we obtain after lengthy but straightforward calculations the result 

Kn,m(r”, cp“, t;  cp’) 

where the classical action is 

[ si L!k ( cp ” cp ’1 1 

- 2r’r” cos(cp”F cp’+  2.rrkn/m)] 

and the diffractive amplitude is ( z  = Ar’r” / s in (o t ) )  

Dyy (cp ‘T  cp”) 

There are 2m classical paths in total, exactly half of which are paths with an  odd 
number of reflections at the surfaces of the wedge. From ( 2 0 )  we see that each path 
contributes, one non-diffractive term and ( n  - 1)  diffractive terms. More explicitly, we 
have 

where the modified factor 

It is clear that (23) reduces to the ‘collapsing cases’ [7,13] only when n = 1. However, 
( 2 3 )  can still be represented as a sum over classical paths put with modified Van Vleck 
formula. For an  irrational wedge, the propagator ( 13) cannot be expressed in the above 
form since there exist an  infinite number of classical paths [ 1 4 ] .  
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Studying the diffractive terms mentioned above, we restrict ourselves 
of n = 2  for convenience. Using 

we bave, with the help of 3.361-1 and 9.236-1 in [12], 

F(lr;l2)(q”T cp’)  

=4[1 +D:r;l”(cp”T(O’)] 

dul ‘ exp-2ui sin2[(cp”T cpf+4nk/m)/2] 
ul!? 

to the case 

and for c p ” =  cp’ and k = m (direct classical path) 

F (  171.2) [ (:)”’( Ar’r’’ ) ”>] 
( O ) = +  1-2i - - 

sin(ot)  

These diffractive terms are very difficult to interpret physically and do not correspond 
to any classical paths, even with Keller’s generalization of that notation to diffractive 
rays [ 151. 

5. Density matrix and partition function 

For imaginary time t + -$h, we get the density matrix from (13) 

2A 
( U T  sinh(Phu)  

) exp[ -A ( r ’?+ rt t2) coth(pfiw)] d r ” ,  r’, P )  = 

Using the table 6.611-1 in [12], the partition function is of the form 

Z ( P ) = j o x  r d r j : v ~ ( r , r ; P ) c i c p  

Ar’ 
(sinhiphw)) d r  

- - A f exp[(-Ar2/2) coth(phw)]l ,  ii sinh(phw) I = I  (, 

- exp(-pfiw/2a) - 
4 sinh(phu)  sinh(pfiw/2a) 
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which gives the free energy 

hw 1 
(28) 

1 
F ( P ) =  - - lnZ(P)=-+-In[4sinh(phw) sinh(phw/2a)]. 

P 2 0  P 
For P +CO, we have 

F ( P )  = Eo,,  = h w / a +  hw (29) 

Writing the Bessel function as a degenerate hypergeometric function (see table 
which is the ground-state energy in the energy spectrum (9). 

9.238-1 in [12]): 

(13) reduces to 

K ,  ( r” ,  cp”, t ;  r ‘ ,  cp’) 

2A 
a n i  sin( w t )  

sin ( I cp  ”/ a ) sin ( Icp ’/ a ) 

2 A r r ” 

Finally we should mention that the exactly solvable propagator (31) belongs to the 
first group as classified by Inomata [16] and can be evaluated without applying the 
conventional dimensional extension technique [ 171, as we expect. 
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